Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Nature ; 626(7999): 555-564, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38356065

RESUMO

The possibility that the Amazon forest system could soon reach a tipping point, inducing large-scale collapse, has raised global concern1-3. For 65 million years, Amazonian forests remained relatively resilient to climatic variability. Now, the region is increasingly exposed to unprecedented stress from warming temperatures, extreme droughts, deforestation and fires, even in central and remote parts of the system1. Long existing feedbacks between the forest and environmental conditions are being replaced by novel feedbacks that modify ecosystem resilience, increasing the risk of critical transition. Here we analyse existing evidence for five major drivers of water stress on Amazonian forests, as well as potential critical thresholds of those drivers that, if crossed, could trigger local, regional or even biome-wide forest collapse. By combining spatial information on various disturbances, we estimate that by 2050, 10% to 47% of Amazonian forests will be exposed to compounding disturbances that may trigger unexpected ecosystem transitions and potentially exacerbate regional climate change. Using examples of disturbed forests across the Amazon, we identify the three most plausible ecosystem trajectories, involving different feedbacks and environmental conditions. We discuss how the inherent complexity of the Amazon adds uncertainty about future dynamics, but also reveals opportunities for action. Keeping the Amazon forest resilient in the Anthropocene will depend on a combination of local efforts to end deforestation and degradation and to expand restoration, with global efforts to stop greenhouse gas emissions.


Assuntos
Florestas , Aquecimento Global , Árvores , Secas/estatística & dados numéricos , Retroalimentação , Aquecimento Global/prevenção & controle , Aquecimento Global/estatística & dados numéricos , Árvores/crescimento & desenvolvimento , Incêndios Florestais/estatística & dados numéricos , Incerteza , Recuperação e Remediação Ambiental/tendências
2.
Sci Total Environ ; 904: 166681, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37673258

RESUMO

Climate change mitigation and biodiversity conservation are two major environmental actions that need to be effectively performed this century, alongside ensuring food supply for a growing global human population. These three issues are highly interlinked through land management systems. Thus, major global food production regions located in biodiversity hotpots and with potential for carbon sequestration face trade-offs between these valuable land-based ecosystem services. The state of Mato Grosso in Brazil is one such region, where private lands that have been illegally used for agriculture could be restored to natural vegetation - with potential benefits for climate change mitigation and biodiversity conservation, although with potentially negative effects on food production. To address this challenge, in this study we used a multicriteria nexus modeling approach that considers carbon stocks, priority areas for biodiversity conservation, and the opportunity for food production, to develop scenarios of land allocation that aim to balance the benefits and drawbacks of ecosystem restoration. Results show that forcing landowners to restore their individual lands compromises the potential for a "green land market" throughout the Amazon biome in which private landowners with lower food production capacities (e.g., less connected to markets and infrastructure) would benefit from restoration programs that compensate them for the inclusion of environmental restoration among their economic activities, instead of taking large economic risks to produce more food. We additionally highlight that strategic ecosystem restoration can achieve higher gains in biodiversity and carbon with lower costs of restoration actions and with minimal impacts on agriculture. Analyses like ours demonstrate how scenarios of land allocation that simultaneously address climate mitigation and biodiversity conservation through ecosystem restoration, while also minimizing possible impacts on food production, can be sought to move the world towards a sustainable future.


Assuntos
Mudança Climática , Ecossistema , Humanos , Brasil , Conservação dos Recursos Naturais/métodos , Biodiversidade , Agricultura/métodos , Carbono
3.
Science ; 379(6630): eabp8622, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36701452

RESUMO

Approximately 2.5 × 106 square kilometers of the Amazon forest are currently degraded by fire, edge effects, timber extraction, and/or extreme drought, representing 38% of all remaining forests in the region. Carbon emissions from this degradation total up to 0.2 petagrams of carbon per year (Pg C year-1), which is equivalent to, if not greater than, the emissions from Amazon deforestation (0.06 to 0.21 Pg C year-1). Amazon forest degradation can reduce dry-season evapotranspiration by up to 34% and cause as much biodiversity loss as deforestation in human-modified landscapes, generating uneven socioeconomic burdens, mainly to forest dwellers. Projections indicate that degradation will remain a dominant source of carbon emissions independent of deforestation rates. Policies to tackle degradation should be integrated with efforts to curb deforestation and complemented with innovative measures addressing the disturbances that degrade the Amazon forest.


Assuntos
Carbono , Conservação dos Recursos Naturais , Floresta Úmida , Biodiversidade , Ciclo do Carbono , Brasil
4.
Tree Physiol ; 42(5): 922-938, 2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-33907798

RESUMO

Most leaf functional trait studies in the Amazon basin do not consider ontogenetic variations (leaf age), which may influence ecosystem productivity throughout the year. When leaf age is taken into account, it is generally considered discontinuous, and leaves are classified into age categories based on qualitative observations. Here, we quantified age-dependent changes in leaf functional traits such as the maximum carboxylation rate of ribulose-1,5-biphosphate carboxylase/oxygenase (Rubisco) (Vcmax), stomatal control (Cgs%), leaf dry mass per area and leaf macronutrient concentrations for nine naturally growing Amazon tropical trees with variable phenological strategies. Leaf ages were assessed by monthly censuses of branch-level leaf demography; we also performed leaf trait measurements accounting for leaf chronological age based on days elapsed since the first inclusion in the leaf demography, not predetermined age classes. At the tree community scale, a nonlinear relationship between Vcmax and leaf age existed: young, developing leaves showed the lowest mean photosynthetic capacity, increasing to a maximum at 45 days and then decreasing gradually with age in both continuous and categorical age group analyses. Maturation times among species and phenological habits differed substantially, from 8 ± 30 to 238 ± 30 days, and the rate of decline of Vcmax varied from -0.003 to -0.065 µmol CO2 m-2 s-1 day-1. Stomatal control increased significantly in young leaves but remained constant after peaking. Mass-based phosphorus and potassium concentrations displayed negative relationships with leaf age, whereas nitrogen did not vary temporally. Differences in life strategies, leaf nutrient concentrations and phenological types, not the leaf age effect alone, may thus be important factors for understanding observed photosynthesis seasonality in Amazonian forests. Furthermore, assigning leaf age categories in diverse tree communities may not be the recommended method for studying carbon uptake seasonality in the Amazon, since the relationship between Vcmax and leaf age could not be confirmed for all trees.


Assuntos
Ecossistema , Árvores , Dióxido de Carbono , Fotossíntese , Folhas de Planta
5.
Conserv Biol ; 34(2): 427-437, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31386221

RESUMO

Brazil hosts the largest expanse of tropical ecosystems within protected areas (PAs), which shelter biodiversity and support traditional human populations. We assessed the vulnerability to climate change of 993 terrestrial and coastal-marine Brazilian PAs by combining indicators of climatic-change hazard with indicators of PA resilience (size, native vegetation cover, and probability of climate-driven vegetation transition). This combination of indicators allows the identification of broad climate-change adaptation pathways. Seventeen PAs (20,611 km2 ) were highly vulnerable and located mainly in the Atlantic Forest (7 PAs), Cerrado (6), and the Amazon (4). Two hundred fifty-eight PAs (756,569 km2 ), located primarily in Amazonia, had a medium vulnerability. In the Amazon and western Cerrado, the projected severe climatic change and probability of climate-driven vegetation transition drove vulnerability up, despite the generally good conservation status of PAs. Over 80% of PAs of high or moderate vulnerability are managed by indigenous populations. Hence, besides the potential risks to biodiversity, the traditional knowledge and livelihoods of the people inhabiting these PAs may be threatened. In at least 870 PAs, primarily in the Atlantic Forest and Amazon, adaptation could happen with little or no intervention due to low climate-change hazard, high resilience status, or both. At least 20 PAs in the Atlantic Forest, Cerrado, and Amazonia should be targeted for stronger interventions (e.g., improvement of ecological connectivity), given their low resilience status. Despite being a first attempt to link vulnerability and adaptation in Brazilian PAs, we suggest that some of the PAs identified as highly or moderately vulnerable should be prioritized for testing potential adaptation strategies in the near future.


Evaluación de la Vulnerabilidad y Adaptación al Cambio Climático de Áreas Protegidas en Brasil Resumen Brasil alberga la mayor extensión de ecosistemas tropicales dentro de áreas protegidas (AP), que protegen la biodiversidad y sustentan a poblaciones humanas tradicionales. Evaluamos la vulnerabilidad al cambio climático de 993 AP brasileñas terrestres y costeras-marinas mediante la combinación de indicadores de riesgo de cambio climático con indicadores de la resiliencia de AP (tamaño, cobertura de vegetación nativa y la probabilidad de transición en la vegetación como consecuencia del cambio climático). Esta combinación de indicadores permite la identificación de amplias rutas de adaptación al cambio climático. Diecisiete AP (20,611 km2 ) fueron altamente vulnerables y se localizaron principalmente en el Bosque Atlántico (7 AP), El Cerrado (6) y la Amazonía (4). Doscientos cincuenta y ocho AP (756,569 km2 ), localizadas principalmente en la Amazonía, tuvieron vulnerabilidad media. En la Amazonía y el oeste de El Cerrado, el severo cambio climático proyectado y la probabilidad de transición de vegetación dirigida por el clima incrementó la vulnerabilidad, a pesar del estado de conservación generalmente bueno de las AP. Más de 80% de las AP con vulnerabilidad alta o media son manejadas por poblaciones indígenas. Por lo tanto, además de los riesgos potenciales para la biodiversidad, también hay amenazas para el conocimiento tradicional y las formas de vida de la gente que habita en esas AP. En por lo menos 870 AP, principalmente en el Bosque Atlántico y la Amazonía, la adaptación podría suceder con poca o ninguna intervención debido al bajo riesgo de cambio climático, estatus de resiliencia alta, o ambos. Por lo menos 20 AP en el Bosque Atlántico, El Cerrado y la Amazonía deberían ser objetivo de intervenciones mayores (e.g., mejoramiento de la conectividad ecológica), dada su estatus de resiliencia baja. A pesar de que es un primer intento para vincular vulnerabilidad y adaptación en AP brasileñas, sugerimos que algunas de las AP identificadas como alta o moderadamente vulnerables se deben priorizar para probar posibles estrategias de adaptación en un futuro próximo.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Biodiversidade , Brasil , Mudança Climática , Florestas , Humanos
6.
Plant Environ Interact ; 1(1): 3-16, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37284129

RESUMO

A common assumption in tropical ecology is that root systems respond rapidly to climatic cues but that most of that response is limited to the uppermost layer of the soil, with relatively limited changes in deeper layers. However, this assumption has not been tested directly, preventing models from accurately predicting the response of tropical forests to environmental change.We measured seasonal dynamics of fine roots in an upper-slope plateau in Central Amazonia mature forest using minirhizotrons to 90 cm depth, which were calibrated with fine roots extracted from soil cores.Root productivity and mortality in surface soil layers were positively correlated with precipitation, whereas root standing length was greater during the dry periods at the deeper layers. Contrary to historical assumptions, a large fraction of fine-root standing biomass (46%) and productivity (41%) was found in soil layers deeper than 30 cm. Furthermore, root turnover decreased linearly with soil depth.Our findings demonstrate a relationship between fine-root dynamics and precipitation regimes in Central Amazonia. Our results also emphasize the importance of deeper roots for accurate estimates of primary productivity and the interaction between roots and carbon, water, and nutrients.

7.
Proc Natl Acad Sci U S A ; 115(46): 11671-11679, 2018 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-30397144

RESUMO

Large uncertainties still dominate the hypothesis of an abrupt large-scale shift of the Amazon forest caused by climate change [Amazonian forest dieback (AFD)] even though observational evidence shows the forest and regional climate changing. Here, we assess whether mitigation or adaptation action should be taken now, later, or not at all in light of such uncertainties. No action/later action would result in major social impacts that may influence migration to large Amazonian cities through a causal chain of climate change and forest degradation leading to lower river-water levels that affect transportation, food security, and health. Net-present value socioeconomic damage over a 30-year period after AFD is estimated between US dollar (USD) $957 billion (×109) and $3,589 billion (compared with Gross Brazilian Amazon Product of USD $150 billion per year), arising primarily from changes in the provision of ecosystem services. Costs of acting now would be one to two orders of magnitude lower than economic damages. However, while AFD mitigation alternatives-e.g., curbing deforestation-are attainable (USD $64 billion), their efficacy in achieving a forest resilience that prevents AFD is uncertain. Concurrently, a proposed set of 20 adaptation measures is also attainable (USD $122 billion) and could bring benefits even if AFD never occurs. An interdisciplinary research agenda to fill lingering knowledge gaps and constrain the risk of AFD should focus on developing sound experimental and modeling evidence regarding its likelihood, integrated with socioeconomic assessments to anticipate its impacts and evaluate the feasibility and efficacy of mitigation/adaptation options.


Assuntos
Conservação dos Recursos Naturais/economia , Agricultura Florestal/economia , Agricultura Florestal/métodos , Brasil , Mudança Climática , Simulação por Computador , Ecossistema , Florestas , Políticas , Medição de Risco/métodos , Árvores
8.
New Phytol ; 219(3): 845-847, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29998533

Assuntos
Secas , Florestas , Ecossistema
9.
New Phytol ; 209(1): 17-28, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26249015

RESUMO

The first generation of forest free-air CO2 enrichment (FACE) experiments has successfully provided deeper understanding about how forests respond to an increasing CO2 concentration in the atmosphere. Located in aggrading stands in the temperate zone, they have provided a strong foundation for testing critical assumptions in terrestrial biosphere models that are being used to project future interactions between forest productivity and the atmosphere, despite the limited inference space of these experiments with regards to the range of global ecosystems. Now, a new generation of FACE experiments in mature forests in different biomes and over a wide range of climate space and biodiversity will significantly expand the inference space. These new experiments are: EucFACE in a mature Eucalyptus stand on highly weathered soil in subtropical Australia; AmazonFACE in a highly diverse, primary rainforest in Brazil; BIFoR-FACE in a 150-yr-old deciduous woodland stand in central England; and SwedFACE proposed in a hemiboreal, Pinus sylvestris stand in Sweden. We now have a unique opportunity to initiate a model-data interaction as an integral part of experimental design and to address a set of cross-site science questions on topics including responses of mature forests; interactions with temperature, water stress, and phosphorus limitation; and the influence of biodiversity.


Assuntos
Dióxido de Carbono/farmacologia , Eucalyptus/fisiologia , Modelos Teóricos , Árvores/fisiologia , Atmosfera , Austrália , Biodiversidade , Brasil , Clima , Desidratação , Inglaterra , Eucalyptus/efeitos dos fármacos , Florestas , Fósforo/deficiência , Floresta Úmida , Solo , Árvores/efeitos dos fármacos
10.
Proc Natl Acad Sci U S A ; 107(8): 3388-93, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20142492

RESUMO

The planned expansion of biofuel plantations in Brazil could potentially cause both direct and indirect land-use changes (e.g., biofuel plantations replace rangelands, which replace forests). In this study, we use a spatially explicit model to project land-use changes caused by that expansion in 2020, assuming that ethanol (biodiesel) production increases by 35 (4) x 10(9) liter in the 2003-2020 period. Our simulations show that direct land-use changes will have a small impact on carbon emissions because most biofuel plantations would replace rangeland areas. However, indirect land-use changes, especially those pushing the rangeland frontier into the Amazonian forests, could offset the carbon savings from biofuels. Sugarcane ethanol and soybean biodiesel each contribute to nearly half of the projected indirect deforestation of 121,970 km(2) by 2020, creating a carbon debt that would take about 250 years to be repaid using these biofuels instead of fossil fuels. We also tested different crops that could serve as feedstock to fulfill Brazil's biodiesel demand and found that oil palm would cause the least land-use changes and associated carbon debt. The modeled livestock density increases by 0.09 head per hectare. But a higher increase of 0.13 head per hectare in the average livestock density throughout the country could avoid the indirect land-use changes caused by biofuels (even with soybean as the biodiesel feedstock), while still fulfilling all food and bioenergy demands. We suggest that a closer collaboration or strengthened institutional link between the biofuel and cattle-ranching sectors in the coming years is crucial for effective carbon savings from biofuels in Brazil.


Assuntos
Biocombustíveis , Conservação de Recursos Energéticos , Animais , Animais Domésticos , Brasil , Carbono , Bovinos , Produtos Agrícolas , Modelos Teóricos , Árvores
11.
An. acad. bras. ciênc ; 80(2): 397-408, June 2008. mapas, tab
Artigo em Inglês | LILACS | ID: lil-482892

RESUMO

We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented. Under this new vegetation classification we obtained a consensus map between two global natural vegetation maps widely used in climate studies. We found that these two maps assign different biomes in ca. 1/3 of the continental grid points. To obtain a new global natural vegetation map, non-consensus areas were filled according to regional consensus based on more than 100 regional maps available on the internet. To minimize the risk of using poor quality information, the regional maps were obtained from reliable internet sources, and the filling procedure was based on the consensus among several regional maps obtained from independent sources. The new map was designed to reproduce accurately both the large-scale distribution of the main vegetation types (as it builds on two reliable global natural vegetation maps) and the regional details (as it is based on the consensus of regional maps).


Elaborou-se um novo mapa global de vegetação natural naresolução horizontal de 1 grau para uso em modelos climáticos de circulação geral. Utilizou-se a classificação de vegetação de Dorman e Sellers com a inclusão de um novo bioma: floresta tropical estacional, que compreende as florestas tropicais decíduas e semidecíduas. Para este novo tipo de bioma, apresentaram-se os valores de parâmetros biogeofísicos domodelo de processos à superfície SSiB. Sob essa nova classificação de vegetação, obteve-se um mapa de consenso entre dois mapas globais de vegetação natural amplamente utilizados em estudos climáticos. Mostrou-se que esses dois mapas alocam biomas diferentes em cerca de 1/3 dos pontos de grade continentais. Para obter um novo mapa global de vegetação natural, as áreas de não-consenso foram preenchidas utilizando-se um conjunto de mais de 100 mapas regionais disponíveis na Internet. Para minimizar os riscos de se usar informação de baixa qualidade, os mapas regionais foram obtidos de sítios confiáveis da Internet, e o procedimento de preenchimento baseou-se no consenso entre vários mapas regionais obtidos de fontes independentes. Elaborou-se o novo mapa de modo a reproduzir em grande escala a distribuição dos principais tipos de vegetação (uma vez que se pauta em dois mapas globais de vegetação natural confiáveis) e também detalhes regionais (uma vez que se baseia em consenso de mapas regionais) com precisão.


Assuntos
Clima , Ecossistema , Mapas como Assunto , Plantas/classificação , Geografia , Modelos Biológicos , Dinâmica Populacional , Estações do Ano , Árvores , Clima Tropical
12.
An Acad Bras Cienc ; 80(2): 397-408, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18506265

RESUMO

We developed a new world natural vegetation map at 1 degree horizontal resolution for use in global climate models. We used the Dorman and Sellers vegetation classification with inclusion of a new biome: tropical seasonal forest, which refers to both deciduous and semi-deciduous tropical forests. SSiB biogeophysical parameters values for this new biome type are presented. Under this new vegetation classification we obtained a consensus map between two global natural vegetation maps widely used in climate studies. We found that these two maps assign different biomes in ca. 1/3 of the continental grid points. To obtain a new global natural vegetation map, non-consensus areas were filled according to regional consensus based on more than 100 regional maps available on the internet. To minimize the risk of using poor quality information, the regional maps were obtained from reliable internet sources, and the filling procedure was based on the consensus among several regional maps obtained from independent sources. The new map was designed to reproduce accurately both the large-scale distribution of the main vegetation types (as it builds on two reliable global natural vegetation maps) and the regional details (as it is based on the consensus of regional maps).


Assuntos
Clima , Ecossistema , Mapas como Assunto , Plantas/classificação , Geografia , Modelos Biológicos , Dinâmica Populacional , Estações do Ano , Árvores , Clima Tropical
13.
Oecologia ; 138(4): 558-65, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14689295

RESUMO

The aggressive behavior of ants that protect plants from herbivores in exchange for rewards such as shelter or food is thought to be an important form of biotic defense against herbivory, particularly in tropical systems. To date, however, no one has compared the defensive responses of different ant taxa associated with the same plant species, and attempted to relate these differences to longer-term efficacy of ant defense. We used experimental cues associated with herbivory--physical damage and extracts of chemical volatiles from leaf tissue--to compare the aggressive responses of two ant species obligately associated with the Amazonian myrmecophyte Tococa bullifera (Melastomataceae). We also conducted a colony removal experiment to quantify the level of resistance from herbivores provided to plants by each ant species. Our experiments demonstrate that some cues eliciting a strong response from one ant species elicited no response by the other. For cues that do elicit responses, the magnitude of these responses can vary interspecifically. These patterns were consistent with the level of resistance provided from herbivores to plants. The colony removal experiment showed that both ant species defend plants from herbivores: however, herbivory was higher on plants colonized by the less aggressive ant species. Our results add to the growing body of literature indicating defensive ant responses are stimulated by cues associated with herbivory. However, they also suggest the local and regional variation in the composition of potential partner taxa could influence the ecology and evolution of defensive mutualisms in ways that have previously remained unexplored.


Assuntos
Adaptação Fisiológica , Formigas , Melastomataceae/fisiologia , Animais , Interações Hospedeiro-Parasita/fisiologia , Melastomataceae/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...